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Abstract 

The article represents the construction of algorithms for monitoring and predicting the risk of 

occupational diseases (sensorineural hearing loss and vibration disease from exposure to local 

and general vibration) and the use of data from clinical and instrumental examination of patients. 
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The health problems of workers caused by acoustic and vibrational influences are noted as 

important and require study and specific quantitative methods of assessment and forecasting by 

the World Health Organization (WHO 2021). Measurements and research in this area are carried 
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out in many countries (Sliwinska-Kowalska 2020; Roberts et al. 2018; Ntlhakana et al. 2020; 

Dobie 2008; Mahbub et al. 2020; Ekman 2021), with the main starting point being the industry 

standards (ISO 1999:2013; ISO 2631-5:2018) for predicting health risks from acoustic and 

vibration impacts.  

Risk assessment and prognosis of occupational diseases, as well as the formation of 

therapeutic and preventive measures are carried out in order to protect health and preserve the 

ability to work, prevent and timely detect occupational diseases of workers engaged in work with 

harmful and (or) dangerous production factors, as well as in cases provided for by the legislation 

of the Russian Federation (GOST R ISO 1999-2017). Employees engaged in certain types of work 

undergo mandatory medical examinations. The assessment when applying for a job is carried out 

in order to achieve: 

- determining the compliance of the health status of a person entering a job with the work 

assigned to him; 

- early detection and prevention of diseases (Periodic medical examinations); 

- dynamic health monitoring; 

- timely detection of diseases, initial forms of occupational diseases; 

- early features of the impact of harmful and (or) hazardous production factors on the 

health of workers; 

- formation of risk groups for the development of occupational diseases. 

More than 15 million people annually fall under these requirements throughout the Russian 

Federation, which in turn entails significant requirements for the availability of a highly qualified 

staff of occupational pathologists evenly distributed throughout the territory of the Russian 

Federation, the costs of their education and maintenance. 

Development of a mathematical model based on risk calculation methodology using 

artificial intelligence tools 

In order to optimize and objectify the process of passing medical examinations and 

decision-making, it is extremely necessary to have an automated system to support the adoption 

of medical decisions by a professional pathologist to assess the risk and forecast the onset of 

occupational disease, including the formation of therapeutic and preventive measures aimed at 
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minimizing the likelihood of its occurrence. At the moment, there is no such system in the Russian 

Federation, while the medical community expresses interest in its creation and dissemination, 

including for the objectification of the assessment of quality control of medical examinations. 

Based on the above, the purpose of this project is to develop a decision support system for 

a professional pathologist (hereinafter referred to as SPP) based on a software product that includes 

an automated model for determining risk and predicting the future state of hearing (risk group) 

using Artificial Intelligence technologies (hereinafter referred to as AI) based on the results of the 

analysis of medical indicators of a doctor's study obtained by conducting an employee 

questionnaire and instrumental diagnostics, including depending on the level and type of acoustic 

impact in the workplace, as well as depending on other factors and parameters. 

The solution of a particular problem of automated determination of the risk of sensorineural 

hearing loss (hearing loss), as well as the risk of vibration disease, will form the basis for the 

development of similar tools for other nosological profiles. 

To solve the task, the scientific group of the project has determined the sequence of actions: 

 

Step 1. Formulation and preliminary steps of the problem solution. 

 

1. Collect a structured set of samples of employees in the number of more than 500 people with 

data on medical indicators obtained by conducting an employee questionnaire and instrumental 

diagnostics and other data on each of the employees in machine-readable form (for example, MS 

Excel tables); 

2. Bring the data to a format acceptable for further automated processing, remove typos, conduct 

format-logical control for each column with data, identifying anomalies. 

3. To classify employees into 5 risk groups (negligent low risk; low risk; medium; high; very high) 

of the onset of the disease under study in accordance with the current recommendations of the 

occupational pathologist to identify risk groups by key parameters. We will carry out such a 

classification with the help of an expert doctor, repeating the logic of his actions in everyday 

practice, we will put the risk group line by line opposite each employee. 

4. Thus, we will get a machine-expert-trained sample at the output for its subsequent processing 

using AI technologies. A similar data preparation operation can be implemented in a software tool 

or using Excel. 
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Step 2. Building an automated data analysis model 

 

5. Further, to solve the problems of automated data research and automated model 

construction, powerful and, at the same time, accessible software tools were used: scikitlearn, 

pandas, numpy, seaborn, streamlit (python programming language) and other open-source libraries 

for working with data. The choice of programming language library data is determined based on 

the following criteria. 

All the basic methods and functions necessary for an exhaustive research in the field of 

data analysis are implemented in the available software libraries (Figure 1) 

 

Figure 1. Examples of visualization of results obtained using analytical methods implemented in 
the SciKitLearn software library package. It can be seen that almost all the most effective 

modern analytical technologies and methods are presented in this library package 

 
Python libraries have absorbed almost all modern analytical mathematical capabilities and provide 
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researchers and developers with a wide range of convenient, ready-to-assemble functional 
software elements: a quick (so-called “seamless”) transition from model development to its 
implementation in prototype, and then in industrial code; powerful visualization tools (see, for 
example, the seaborn library) and debugging (Figure 2). 

 
Figure 2. Visualization of the capabilities of libraries in Python 

 
 

6. Uploading the specified data to the test development environment 

7. For further work on the data, built-in tools of factor analysis, clustering, regressions, 

categorical analysis using the methods of solution trees and "random forests" were used to identify 

the most information-relevant features that determine the classification by risk groups. There was 

a need to conduct an experiment with different techniques. The following methods were used: 

a. The principal component method, including varying the number of leading linear 

combinations of principal components, that is, the proportion of information left for 

analysis 

b. Comparison of regression models for the f2 metric  

c. Method for selective enumeration of combinations of data to build prediction models 

of the group according to the worker  

d. Methods of classifiers based on continuous variables (multilayer neural networks, 

convolutional networks, etc.)  

e. Methods of classifiers based on categorical and continuous variables (random trees, 
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random forest, etc.)  

f. Validation of the constructed model in the metric AUC of the ROC curve by repeated 

random split into training (70% of the data), validation (15%) and test (15%) of the 

sample. 

g. Based on the results and methods of the Bali stages described above, the most accurate 

(that is, giving the least error) numerical and analytical models of automated risk group 

determination are selected; they are reflected in detail in the section of the 

mathematical report. 

9. Analytical prognostic models of health groups are constructed based on forecasts of 

medical indicators that are input to the risk group definition model; an assessment of the accuracy 

of the prognostic model is provided, as well as a justification for the accuracy assessment. 

10. The expert evaluation of the obtained predictive models was carried out; the optimal 

ones were determined. 

 

The applied methods belong to the field that is commonly referred to by the collective term 

"Artificial Intelligence"; in this work, AI methods such as "teaching without a teacher" (cluster 

analysis), factor analysis, regression analysis, other information-statistical, analytical methods that 

are significantly dependent on computational algorithms that are used. 

This approach can be illustrated by the first definition of artificial intelligence given by 

John McCarthy in 1956 at a conference at Dartmouth University. According to McCarthy, "AI 

researchers are free to use methods that are not observed in humans, if necessary to solve specific 

problems." 

A leading researcher in the subject area, Gennady Osipov (President of the Russian 

Association of Artificial Intelligence, permanent member of the European Coordinating 

Committee on Artificial Intelligence (ECCAI), PhD, professor) gives the following description of 

AI: "artificial intelligence is an experimental science. Experimentalism of artificial intelligence is 

that by creating certain computer concepts and models, the researcher compares their behavior 

with each other and with examples of the solution of the same tasks by the specialist, modifies 

them based on this comparison, trying to achieve the best match results." 

This work was carried out in full compliance with the above mentioned paradigm of 

artificial intelligence. 
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The following is a description of the features of objects with their detailed properties and 

characteristics, an analysis of the types of tasks to be solved and the available target variables, a 

description of the models and the result of their work with the data obtained, as well as conclusions. 

The work was carried out on the data of the FGBNU Research Institute of Labour Health, 

presented in the form of a table with 892 rows and 132 columns. Each line is a description of the 

subject of the study - the patient. The first three columns are the target features that we want to 

automatically predict. 

 

Overview of the methods used 

 

In recent years, the use of computing systems and personal computers has been widely 

spread and implemented. A digitalization program is being actively implemented in the country. 

This leads to the fact that sufficient amounts of data are accumulated to build effective and modern 

decision-making systems that help employees solve problems, sometimes completely excluding 

human participation. 

Such a process inevitably affects medicine – an area in which measurements have been 

carried out throughout history, on the basis of which the necessary result was obtained. In recent 

years, methods of modern data analysis have become increasingly used for medicine. This applies 

both to specialized studies with the analysis of images, video streams and audio tracks, and general 

issues related to the processing of arrays of tabular data.  

These algorithms can be used to analyze tabular data and obtain estimated results based on 

them. The capabilities of these algorithms are demonstrated in this paper. Any research begins 

with an analysis of the existing features that describe objects – this is the first part of this work. 

Next, we consider the specifics of the task and choose ways to solve it. After that, we consistently 

analyze various machine learning algorithms and analyze their results. After discussing the results, 

we attempted a long-term prediction of changes in risks for a particular employee. The final part 

presents conclusions and observations. 

 

Feature description of objects 

Each object corresponds to 129 features that make up its medical description. Before 

building a model, you need to check the presented data for correctness. In this study, it was found 
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that there are missing values for some of the features. So there are empty cells in the columns 

describing the Vibration sensitivity at different frequencies. In all cases, the missing values were 

replaced by the average values for the attribute in question. In addition, all categorical features are 

presented in the form of letter classes. In this form, directly, in the presented format, these features 

cannot be applied as input data for mathematical models, therefore, the presented letter 

designations must be changed to numerical ones. In this paper, category "a" was replaced by the 

number 0, category "b" by 1. If there are other classes in the attribute, then they were replaced by 

numbers accordingly. 

Features are naturally divided into groups. Examples of such a division and an analysis of 

the available features are given below. 

 

Separation of features by the type of their values  

Most of the features in the data under consideration have a categorical nature. Categorical 

features describe the belonging of the object of research to a certain type or class. In our data, 

most of the categorical features are binary, representing two classes. Most often, this may be the 

presence of any complaints, the fact of observation of a certain property or behavior of the 

patient. Examples of such features are shown in Table 1. 

 

№ Feature name 

1 Sex 

2 Pain in the feet/and shins 

3 Pain in the lumbar spine 

4 Hyperhidrosis of the hands 

5 Hyperhidrosis of the feet 

6 Perforation Mt-2 

7 Traumatic brain injuries 

8 Smoking 

9 Harmful factors 

10 1.1.3. 

11 1.1.4.3.1. 

12 1.1.4.3.2. 

13 1.1.4.3.3. 

14 1.1.4.5. 

15 1.1.4.8.2. 

16 1.2.1. 
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17 1.2.10. 

18 1.2.14.1. 

19 1.2.2. 

20 1.2.21.1. 

21 1.2.25. 

22 1.2.30.1. 

Table 1. Examples of features: the Python scikit learn library allows the researchers to monitor 
categorical, numerical, textual and other features during debugging and testing of the program 

 

Numerical features represent the description of objects in the form of a numerical 

expression. At the same time, these features can take both a fixed set of values (such features as 

year of birth, work experience, etc.) and an infinitely large set of values of real numbers. In our 

task, we work with medical data, so that the acceptable range of accepted values for almost every 

attribute is known. According to the general meaning of the attribute, it is possible to understand 

in which range its values lie. When receiving data from a source, according to these criteria, it is 

possible to determine the correctness of the data provided or to find anomalies in the data. 

As with any set of numerical values, various functions can be applied to numerical ones, 

finding important statistical parameters of the data provided. Thus, it is possible to estimate the 

mean value, variance and other possible parameters of distributions that can give a general idea of 

the feature under consideration. 

Table 2 represents a list of numerical features as an example. 

№ Numerical feature name 

1 Risk of sensorineural hearing loss 

2 Risk local vibration 

3 Risk general vibration 

4 Year of Birth 

5 Work experience 

6 The year of the current employment 

7 Thermometry of the right hand, degrees Celsius 

8 Thermometry of the left hand, degrees Celsius 

9 Thermometry of the right foot, degrees Celsius 

10 Thermometry of the left foot, degrees Celsius 

11 Vibration sensitivity at 125 Hz on the right, dB 

12 Vibration sensitivity at 125 Hz on the left, dB 

13 Vibration sensitivity at a frequency of 32 Hz on the right 

14 Vibration sensitivity at 63 Hz on the right 
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15 Vibration sensitivity at 250 Hz on the right 

16 Vibration sensitivity at a frequency of 32 Hz on the left 

17 Vibration sensitivity at 63 Hz on the left 

18 Vibration sensitivity at 250 Hz on the left 

19 Hearing threshold at 250 Hz, (dB) 

20 Hearing threshold at the frequency of 500 Hz (dB) 

21 Hearing threshold at the frequency of 1000 Hz(dB) 

22 Hearing threshold at the frequency of 2000 Hz(dB) 

23 Hearing threshold at a frequency of 3000 Hz(dB) 

24 Hearing threshold at the frequency of 4000 Hz(dB) 

25 Hearing threshold at the frequency of 6000 Hz(dB) 

26 Hearing threshold at the frequency of 250 Hz (dB) 

27 Hearing threshold at a frequency of 500 Hz, (dB) 

28 Hearing threshold at a frequency of 1000 Hz, (dB) 

29 Hearing threshold at a frequency of 2000 Hz, (dB) 

30 Hearing threshold at a frequency of 3000 Hz, (dB) 

31 Hearing threshold at 4000 Hz,(dB) 

32 Hearing threshold at a frequency of 6000 Hz, (dB) 

Table 2. Examples of numerical features 

 

Next, we will consider the division of features by meaning, where we will consider in more 

detail the descriptions that were presented above. 

Separation of features by meaning 

It is more convenient to present a general description of objects by dividing their features 

into groups by meaning. Then, considering each group separately, it is possible to understand in 

more detail what data the developed models will have to work with. This stage is also very useful, 

because by doing it, the researchers can find "faces" and "insights" in the data that can significantly 

improve the result. 

Examples of the division of features by meaning: 

 general information (socio-demographic and formal information about work), 

 pain and complaints, 

 thermometry of the hands, 

 vibration sensitivity, 

 medical factors (binary), hearing 
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 threshold at various frequencies, 

 harmful factors, 

 harmful work. 

Figures 3-8 show distributions and histograms of patients by features. 

Figure 3 - Distribution of the studied objects by age 
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Figure 4 - Distribution of the studied objects by work experience 

 

 
Figure 5 - Gender distribution of the studied 
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Figure 6 - Presented thermometry of the hands (distribution) 

 

 
Figure 7 - Presented stop thermometry (distribution) 

 



14 
 

 
Figure 8 - Vibration sensitivity at 125 Hz (distribution) 

 

When considering these graphs and others for other distinguished features, we can get an 

idea of the average patient we will examine. This stage of the work is very important, because here 

we can see the features and anomalies in the data. 

 

The type of the problem to be solved and the target variables 

Target variables represent different risk groups for occupational diseases. In relation to 

training samples, target variables are determined by expert evaluation, or based on data from long-

term (the period of the forecast foundation) prospective occupational pathology medical and 

medico-social observations comparable to a given period of anticipation of the risk forecast. 

Each of the target variables represents different risk groups that take a value from 1 to 5. 

Thus, each patient is assigned according to one of the 5 risk groups of PD. This task can be 

considered as a classical classification problem, however, the comparability of risk groups among 

themselves will not be taken into account, although in reality it is known that the higher the group, 

the worse, that is, the risk is higher. This feature and information are used in the development of 

models. 

With the standard approach to solving and dividing the data into 5 groups, the possibility 

of comparing the level of risk among patients of the same group and comparing groups among 

themselves is lost. Therefore, they change the type of problem to be solved from a classification 

problem to a regression problem, given that the target variables of different risk groups are 

comparable to each other. This allows for gradation between employees who have the same risk 
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group, arranging them in ascending or descending order of existing risks. 

One of the approaches to solving this problem may be to replace the type of problem being 

solved with a classification problem with a regression problem. At the same time, we will take into 

account that the target variables of different classes are comparable to each other. In addition, it 

will be possible to arrange gradation between objects of the same class, building them in the form 

of increasing or decreasing existing risks. 

Figures 9-11 show the types of target variables and proportions of risk groups that are in 

our training sample in relation to professional sensorineural hearing loss and vibration disease. 

The provided sample is not balanced, which must be taken into account when splitting the data 

into training and test samples and when analyzing the results obtained and indicative metrics. 

 
Figure 9 - Distribution of the results of the assessment of the risk of sensorineural hearing loss 

obtained by expert means 

 
Figure 10 - Distribution of risks of vibration disease (local vibration) obtained by expert means 
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Figure 11 - Distribution of vibration disease risks (general vibration) obtained by expert means 

 

In all three tasks, we see that the presented samples are extremely unbalanced. This 

circumstance should be taken into account when splitting the data into training and test samples. 

This fact should be taken into account when analyzing the results and indicative metrics. 

 

Trained models and their results 

Below are various models with their brief descriptions and the results they showed on the 

tasks being solved. In each case, the available data is divided into training and test samples 

(datasets) in a ratio of 4:1, training takes place on a training dataset, verification and the presented 

results are checked on a deferred (test) sample. In each case, various metrics are considered that 

characterize the correctness of the predictions of the obtained models. 

Linear regression model 

Coefficients are selected for each feature in such a way that the target variable is expressed 

through a general formula: 

 
The advantages of this model are that the resulting formula is simple and clear. By its 

appearance and coefficients, it is clear how each feature affects the result. The disadvantage of this 

approach is that it is quite simplified, for optimal results and analysis of coefficients in formulas, 

preprocessing of features is needed. 
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Determining the risk of sensorineural hearing loss 

For the first target feature, the model showed the following metrics on a deferred sample 

(Table 3):  

Model metrics type Metrics values 

Accuracy score 0.7877 

Mean absolute error (mae) 0.3227 

Mean squared error (mse) 0.1784 

Table 3. Metrics of sensorineural hearing loss linear regression model 

Here and further, respectively, the standard concepts and abbreviations accuracy score are 

used - accuracy score, that is, the proportion of correct answers of the algorithm; MAE - the 

average absolute error, MSE - the standard error. It can be seen that the model is being built, and 

its accuracy is reasonably correlated with the size of the training sample already on the basic 

technologies of model construction. 

 

For example, below are top 5 features with the highest values of weights (Table 4): 

top5 "+" features values of 
weights 

The year of the current employment 0.2468 

Work experience 0.2359 

Hearing threshold at 4000 Hz,(dB)  0.1998 

The hearing threshold at the frequency of 4000 Hz(dB) 0.1245 

The hearing threshold at the frequency of 2000 Hz(dB) 0.0952 

Table 4. Top five features with the highest values of weights 

 

Similarly, we can give an example of 5 features with the smallest (negative) weights: 

 

top5 "-" features values of 
weights 

The hearing threshold at the frequency of 1000 Hz -0.0948 

27.6. -0.0524 

Hearing threshold at 250 Hz, (dB)                    -0.0444 

Lower limb right (no changes-a, there are changes-b) -0.0410 

Untreated ear diseases: chronic purulent otitis -0.0368 

Table 5. Top five features with the smallest values of weights 
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These weights allow the researchers to see the contribution to the result of each feature 

describing the object. In this case, the features are pre-normalized (the average is subtracted from 

the features and divided by the amount of variance), so it is correct to compare such coefficients. 

Determination of the risk of vibration disease (local vibration) 

For the second target value, the linear regression model showed the following metrics: 

Model metrics type Metrics values 

Accuracy score 0.4692 

Mean absolute error (mae) 0.6513 

Mean squared error (mse) 0.6827 

Table 6. Metrics of vibration disease linear regression model (local vibration) 

 

Top 5 features with the highest values of weights: 

top5 "+" features values of 
weights 

3.4.1. 0.1901 

The year of the current employment   0.1200 

1.2.2.                                             0.1071 

Paint brushes (Normal color-a, Marble-cyanotic–b) 0.1033 

Work experience                                    0.0974 

Table 7. Top five features with the highest values of weights 

 

Similarly, example of 5 features with the smallest negative weights: 

top5 "-" features values of 
weights 

Thermometry of the left hand, degrees Celsius -0.5786 

Thermometry of the right hand, degrees Celsius -0.5786 

1.3.5.                                             -0.1540 

Pain in the hands / and forearms (yes-a, no-b) -0.1028 

3.4.2.                                             -0.1009 

Table 8. Top five features with the smallest values of weights 

 

These weights allow the researchers to see the contribution to the result of each feature 

describing the object. In this case, the features are pre-normalized (the average is subtracted from 
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the features and divided by the variance value), so it is correct to compare such coefficients. 

Determination of the risk of vibration disease (general vibration) 

For the third target value, similar metrics and results are provided. The linear regression 

model showed the following metrics: 

Model metrics type Metrics values 

Accuracy score 0.5474 

Mean absolute error (mae) 0.5423 

Mean squared error (mse) 0.4683 

Table 9. Metrics of vibration disease linear regression model (general vibration) 

 
Top 5 features with the highest values of weights: 

top5 "+" features values of 
weights 

1.2.37.                                            0.0646 

Hearing threshold at 250 Hz, (dB) 0.0519 
The upper limb to the left (there are no changes – a, 
there are changes – b) 0.0515 

Perforation Mt-2                                   0.0510 

2.                                    0.0500 

Table 10. Top five features with the highest values of weights 

 

Similarly, example of 5 features with the smallest negative weights: 

top5 "-" features values of 
weights 

The year of the current employment                 -0.3297 

Work experience                                    -0.3182 

Thermometry of the left hand, degrees Celsius      -0.2801 

Thermometry of the right foot, degrees Celsius     -0.2189 

Thermometry of the left foot, degrees Celsius      -0.2165 

Table 11. Top five features with the smallest values of weights 

 
Weights allow the researchers to see the contribution to the result of each feature describing 

the object. In this case, the features are pre-normalized (the average is subtracted from the features 

and divided by the amount of variance), so it is correct to compare such coefficients. 

Based on the first results, we can say that the first task is solved better than the next two. 
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The accuracy of solving the first problem is satisfactory, the quality of solutions to the 2nd and 3rd 

problems is low. Perhaps this model is too simple for such a set of features and does not take into 

account the patterns inherent in the features. 

 

The decision tree model 

The decision tree model is an algorithm that provides an answer by making decisions at 

various levels, at each of which it checks the object for a certain condition on the selected attribute. 

Schematically, this algorithm can be represented as a binary tree. To get an answer, the researchers 

need to go down from its root to one of the leaves. The big advantage of this algorithm is its 

intuitive clarity. 

Determining the risk of sensorineural hearing loss 

For the first target feature, the model showed the following metrics on a deferred sample: 

 

Model metrics type Metrics values 

Accuracy score 0.8994 

Mean absolute error (mae) 0.1184 

Mean squared error (mse) 0.0884 

Table 12. Metrics of sensorineural hearing loss decision tree model 

 

A part of the calculated decision tree is shown in Figure 12. 
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Figure 12 - Visual representation of the decision tree - a model that gives the most accurate 

results for the task of predicting the risk of sensorineural hearing loss 
 

In this model, the maximum depth of tree construction is limited. The accuracy indicated 

above and other metrics are thereby determined by at least a small part of the original features. 

Let's list the features on the basis of which the greatest number of decisions were made when the 

algorithm was running: 

feature importance 

The hearing threshold at the frequency of 4000 Hz(dB) 0.4105 

Hearing threshold at 4000 Hz,(dB) 0.3856 

The hearing threshold at the frequency of 2000 Hz(dB) 0.0700 

Hearing threshold at a frequency of 500 Hz, (dB) 0.0422 

The hearing threshold at the frequency of 500 Hz (dB) 0.0375 

The hearing threshold at the frequency of 250 Hz (dB)  0.0275 

Lower limb right (no changes - a, there are changes - b)  0.0069 

The hearing threshold at the frequency of 6000 Hz(dB)  0.0069 

The mucous membrane of the posterior pharyngeal state 0.0066 

Hearing threshold at a frequency of 1000 Hz, (dB) 0.0062 

Table 13. A list of the features on the basis of which the greatest number of decisions were made 
for estimation of the risk of sensorineural hearing loss. 
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We see that the column names are repeated, most likely each of the repeated features refers 

to the left and right sides. 

Determination of the risk of vibration disease (local vibration) 

For the second target value, the decision tree model showed the following metrics: 

 

Model metrics type Metrics values 

Accuracy score 0.8491 

Mean absolute error (mae) 0.1799 

Mean squared error (mse) 0.1885 

Table 14. Metrics of decision tree model of vibration disease (local vibration) 

 

The completed decision tree is shown in Figure 13. 

 
Figure 13 - Visual representation of the decision tree - a model that gives the most accurate 

results for the task of predicting the risk of vibration disease (local vibration) 
 

Top of the features by which this decision tree works: 

feature importance 

Thermometry of the right hand, degrees Celsius 0.4629 

Thermometry of the left hand, degrees Celsius 0.3472 

Hyperhidrosis of the hands 0.0769 

Pain in the hands / and forearms (yes - a, no - b) 0.0257 

Attacks of whiteness / blueness of the fingers 0.0163 

Hypalgesia and/or hypesthesia of the feet  0.0155 

Numbness and/or paresthesia of the hands  0.0107 

Age                                                0.0095 
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Symptom of white spot and/or Bogolepovs test (negative - a, 
positivs - b) 0.0056 

The hearing threshold at the frequency of 2000 Hz(dB) 0.0050 

Vibration sensitivity at 250 Hz on the left  hand 0.0049 

The hearing threshold at the frequency of 250 Hz (dB) 0.0045 

Thermometry of the right foot, degrees Celsius    0.0026 

The left lower limb (no changes - a, there are changes - b) 0.0022 

Numbness and/or paresthesia of the feet 0.0020 

Paint brushes (Normal color - a, Marble-cyanotic - b) 0.0017 

Hearing threshold at 250 Hz, (dB)               0.0016 

1.1.                                              0.0014 

The hearing threshold at the frequency of 1000 Hz(dB) 0.0013 

Vibration sensitivity at 63 Hz on the left  hand 0.0010 

The hearing threshold at the frequency of 4000 Hz(dB) 0.0009 

Work experience                                   0.0007 

Table 15. A list of the features on the basis of which the greatest number of decisions were made 
for estimation of the risk of vibration disease (local vibration). 

Again, we see that the defining parameters for decision-making in this case are a limited 

set of initial features. 

Determination of the risk of vibration disease (general vibration) 

For the third target value, similar metrics and results are provided. The decision tree model 

showed the following metrics: 

Model metrics type Metrics values 

Accuracy score 0.9218 

Mean absolute error (mae) 0.1058 

Mean squared error (mse) 0.0837 

Table 16. Metrics of vibration disease decision tree model (general vibration)  

 

The general view of the model (the resulting tree) with the features and conditions of 

transition to the lower levels is shown in Figure 14. 
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Figure 14 - Visual representation of the decision tree - a model that gives the most accurate 

results for the task of predicting the risk of vibration disease (general vibration) 
 

The features that the algorithm focuses on when descending to the leaves of the tree and 

making the resulting decision: 

feature importance 

Thermometry of the left foot, degrees Celsius  0.2726 

Thermometry of the right foot, degrees Celsius 0.2702 

Thermometry of the right hand, degrees Celsius 0.2426 

Thermometry of the left hand, degrees Celsius 0.1959 

Vibration sensitivity at 250 Hz on the left 0.0098 

Hearing threshold at 250 Hz, (dB) 0.0028 

The mucous membrane of the posterior pharyngeal state 0.0027 

The hearing threshold at the frequency of 4000 Hz(dB) 0.0019 

1.1.                                              0.0015 
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Table 17. A list of the features on the basis of which the greatest number of decisions were made 
for estimation of the risk of vibration disease (general vibration). 

 

We see that this simple but effective algorithm has shown significantly better results than 

the linear regression model, while the interpretability of the results and the logic of decision-

making are just as well understood. 

Random Forest Model 

This method is based on the construction of a set of algorithms for the decision tree. At the 

same time, the displayed quality should be better than the quality of individual algorithms. In 

addition, this algorithm allows you to evaluate the quality of the available features, their 

importance in decision-making. 

Determining the risk of sensorineural hearing loss 

For the first target feature, the model showed the following metrics on a deferred sample: 

Model metrics type Metrics values 

Accuracy score 0.9218 

Mean absolute error (mae) 0.1310 

Mean squared error (mse) 0.0612 

Table 18. Metrics of sensorineural hearing loss random forest model 

The random forest model allows you to evaluate how important the features that describe 

the objects are. The following are the most important features for the first task. 

 

feature importance 
Loss 
reduction 
sum 

The hearing threshold at 4000 Hz (dB) 0.3338 0.3338 

The hearing threshold at of 4000 Hz (dB) 0.3291 0.6629 

The hearing threshold at  of 500 Hz (dB)  0.0406 0.7035 

The hearing threshold at  of 500 Hz (dB) 0.0385 0.7421 

The hearing threshold at  of 2000 Hz (dB) 0.0338 0.7758 

The hearing threshold at  of 2000 Hz (dB)  0.0181 0.7940 

Untreated ear diseases: chronic purulent otitis 0.0157 0.8096 

The hearing threshold at  of 250 Hz (dB) 0.0110 0.8206 

The hearing threshold at  of 6000 Hz, (dB) 0.0102 0.8308 

Thermometry of the left foot, degrees Celsius 0.0093 0.8402 
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Somatic diseases: diseases of the circulatory system 0.0085 0.8486 

Vibration sensitivity at  of 32 Hz on the left,  dB 0.0082 0.8569 

The hearing threshold at  of 3000 Hz  (dB) 0.0071 0.8639 

Vibration sensitivity at 125 Hz on the left, dB 0.0071 0.8710 

Vibration sensitivity at 63 Hz on the left, dB 0.0064 0.8774 

Table 19. The most important features for the sensorineural hearing loss random forest model 

Let's look at how the total share of the relative loss decrease grows. This value can be 

interpreted as what part of the decisions we can make using only these first features. In other words, 

what proportion of the information needed to solve this problem and contained in the data, we use. 

 
Figure 15 - Dependence of the normalized accuracy of the prediction of the risk class of the 

model on the number of features taken into account in the model (sensorineural hearing loss) 
 

These data allow us to highlight information that is primarily worth paying attention to 

when making decisions. We can identify a set of features that ensures maximum awareness of the 

decision-making system for this type of tasks. 

Determination of the risk of vibration disease (local vibration) 

For the second target feature, the model showed the following metrics on a deferred 

sample: 
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Model metrics type Metrics values 

Accuracy score 0.9218 

Mean absolute error (mae) 0.1460 

Mean squared error (mse) 0.0977 

Table 20. Metrics of vibration disease random forest model (local vibration) 

Below are the top 15 most important features for decision-making when determining the 

second target feature: 

feature importance 
Loss 
reduction 
sum 

Thermometry of the right hand, degrees Celsius 0.4022 0.4022 

Thermometry of the left hand, degrees Celsius 0.3715 0.7737 

Numbness and/or paresthesia of the hands 0.0373 0.8110 

Hyperhidrosis of the hands                         0.0286 0.8397 

Paint brushes (Normal color - a, Marble-cyanotic - b) 0.0162 0.8559 

Pain in the hands / and forearms (yes - a, no - b) 0.0159 0.8717 

Attacks of whiteness / blueness of the fingers 0.0157 0.8874 

Age 0.0128 0.9002 

Symptom of white spot and/or Bogolepovs test 0.0105 0.9107 

Hypalgesia and/or hypesthesia of the feet  0.0076 0.9183 

Vibration sensitivity at 125 Hz on the left, dB 0.0043  0.9226 

The hearing threshold at the frequency of 4000 Hz (dB) 0.0036 0.9262 

Vibration sensitivity at 250 Hz on the left, dB 0.0032 0.9294 

Vibration sensitivity at 250 Hz on the right, dB 0.0032 0.9326 

Work experience 0.0030 0.9357 

Table 21. The most important features for vibration disease random forest model (local 
vibration) 

How does the total share of information about the patient in the issue of solving this type 

of tasks grow from the first important features: 
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Figure 16 - Dependence of the normalized accuracy of the prediction of the vibration disease 

risk class by the model on the number of features taken into account in the model (local 
vibration) 

 

First of all, it is worth paying attention to these features when making decisions on 

determining the risk of local vibration. 

 

Determination of the risk of vibration disease (general vibration) 

For the third target feature, the model showed the following metrics on a deferred sample: 

Model metrics type Metrics values 

Accuracy score 0.9596 

Mean absolute error (mae) 0.0738 

Mean squared error (mse) 0.0363 

Table 22. Metrics of vibration disease random forest model (local vibration) 

Below are the top 15 most important features for decision-making when determining the 

third target feature. 
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feature importance 
Loss 
reduction 
sum 

Thermometry of the left foot, degrees Celsius 0.2479 0.2479 

Thermometry of the right foot, degrees Celsius 0.2465 0.4944 

Thermometry of the right hand, degrees Celsius 0.2280 0.7225 

Thermometry of the left hand, degrees Celsius 0.1923 0.9147 

Age 0.0109 0.9256 
The hearing threshold at the frequency of 4000 Hz 
(dB) 0.0062 0.9318 

Vibration sensitivity at a frequency of 32 Hz 0.0046 0.9364 
The hearing threshold at a frequency of 6000 Hz 
(dB) 0.0039 0.9403 

Vibration sensitivity at 63 Hz on the right, dB 0.0033 0.9436 

Tinnitus (constant) (yes - a, no - b) 0.0033 0.9468 

Hypalgesia and/or hypesthesia of the feet 0.0029 0.9497 

Vibration sensitivity at 250 Hz on the left, dB 0.0025 0.9523 

Vibration sensitivity at 250 Hz on the right dB 0.0025 0.9548 
The hearing threshold at the frequency of 250 Hz 
(dB) 0.0023 0.9571 

Work experience 0.0023 0.9594 

Table 23. The most important features for vibration disease random forest model (general 
vibration) 

The growth of the total "importance" of features with an increase in their number (we take 

the top of the most important features): 
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Figure 17 - Dependence of the normalized accuracy of the prediction of the vibration disease 

risk class by the model on the number of features taken into account in the model (total 
vibration) 

 

These features should first of all be paid attention to when making decisions to determine 

the risk of general vibration. 

We see that this algorithm has allowed us to further improve the results obtained. 

Predictive risk model 

For the correct formulation of the problem of risk forecasting and for a meaningful study 

of forecasts, data is needed in which a time series for each patient would be presented. In other 

words, such a cross-section of parameters that we have at the moment must be repeatedly 

reproduced in time. When predicting the result at a future moment in time, to a certain extent, it 

relies on information about the current moment in time (or on information in past moments of 

time). At this stage, we do not have this reference point on which the created model should have 

been based. This is necessary not only for prediction, but also for training the model itself. 

At the current time, this disadvantage can be compensated by the fact that we can change 

certain features that will naturally change with the passage of time, and look at the result of the 

model. At the same time, we are forced to assume that all other features, clearly independent of 
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time, will remain unchanged. In reality, other features that fully describe the object can and will 

change. So, a person's working conditions may change, certain symptoms and observations may 

appear. All of the above certainly depends on the length of service, working conditions and 

changes over time. To take into account such subtle effects, it is necessary to assess how these 

features change over time. For such models, we come back to the question of the data provided, 

because to train such algorithms, time series with variable parameters are needed. This conclusion 

confirms the fact that, judging by the results of the models (random forest and decision tree), the 

main contribution to the result is made by specific medical parameters, which only indirectly 

depend on time. However, as a first approximation, we can consider how the risk changes in the 

linear regression model. 

For example, consider the problem of determining the risk of sensorineural hearing loss 

when solving it with a linear regression model. Consider a person in a certain risk group. Next, we 

will change his features of seniority and age, which will grow over time. And let's estimate how 

many years the risk will increase to the next degree. 

In the model we trained, weights for features of age and seniority have positive values. 

This corresponds to our expectations that the longer a person works and the more experience he 

has, the greater the risk of getting an occupational disease. 

We will change the features of age and seniority and monitor how the results that our model 

produces change (at the same time, we will not forget that other features can also change over time, 

but in this approach we neglect this). For such a change, we get: 

 

Year 
Risk 

estimation 
0 2.132 

5 2.306 

10 2.480 

15 2.653 

20 2.827 

25 3.001 

Table 24. Risk of sensorineural hearing loss forecasted by a linear regression model 

 

We see that over 25 years of work, with the current features, the risk will increase to 3. 

It is worth noting once again that most likely, during this time, other features that describe 
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employees should change. In order to correctly predict the risk, we must take into account such 

changes. 

As an alternative, we can offer a statistical regression assessment of changes in features, 

which can be used to calculate time-varying parameters for their further transmission to the model. 

Conclusions and model selection 

The study presents the results of using various mathematical models to determine the risks 

of neural network hearing loss, local and global vibration. The results of the work show that the 

problem is solved, the accuracy of the results obtained can be called good. Tables 1-3 below show 

comparative indicators of all the presented models. 

 

Table 1 - Risk of sensorineural hearing loss 
Accuracy\ Model Linear Regression Decision Tree Random Forest 

Accuracy (the 
proportion of 

exact solutions 
of the model) 

0.788 0.894 0.933 

MAE (average 
absolute error) 

0.325 0.154 0.127 

MSE (Standard 
error) 

0.183 0.099 0.060 

Table 25. Metrics of sensorineural hearing loss risk models 
 

Accuracy\ Model Linear 

Regression 

Decision Tree Random Forest 

Accuracy (the 
proportion of 

exact solutions 
of the model) 

0.464 0.838 0.927 

MAE (average 
absolute error) 

0.651 0.186 0.148 

MSE (Standard 
error) 

0.682 0.183 0.094 

Table 26. Metrics of vibration disease risk models (local vibration) 

 
Accuracy\ Model Linear 

Regression 

Decision Tree Random Forest 

Accuracy (the 
proportion of 

0.542 0.927 0.966 
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exact solutions 
of the model) 
MAE (average 

absolute error) 
0.543 0.095 0.077 

MSE (Standard 
error) 

0.466 0.061 0.036 

Table 27. Metrics of vibration disease risk models (general vibration) 

We see that the random forest model performed best in all three tasks. The advantages of 

this model include the fact that minimal preprocessing of features is required. The decision tree 

model also showed good results. 

Nevertheless, the results of this study can be improved if more time is devoted to analyzing 

existing features, generating new features, configuring hyperparameters of the algorithms used, 

considering new metrics and the possibilities of using the results obtained. 

The encouraging results of this work do not allow us to speak with confidence about the 

possible application of these models for complex risk forecasting over time. Now we can only give 

an estimate for these parameters. The paper indicates ways to solve this issue: first of all, we need 

appropriate data that would show us how the features of objects change over time. But even in this 

form, the models shown can demonstrate the optimal ways to work with staff and their healthcare. 

An example of an explicitly interpreted DSS fragment based on an automated 

generated and optimized model 

Here is an example of a constructed decision tree up to a depth of 2 (Figure 18). In this 

case, the upper-level branching criteria can be considered as decisive rules and expert conditions 

that can be used when making decisions: 
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Figure 18 - Fragment of the decision tree model (example) 

 

In this image, the conditions X[70] ≤ 24.5 are given in the first block. This suggests that 

we should look at the 70th feature of the description of the object – in this case, it is "The threshold 

of hearing at a frequency of 4000 Hz (dB)". Accordingly, for further decision-making, we descend 

either to the left or to the right branch, depending on the result of our comparison. At the next 

level, we check the 77th attribute in the left branch, and the 70th again in the right branch, but at a 

new value. 

As a result, we finally descend to a certain answer that determines the risk in question. 

In this case, we can stop at the level we need (or at the available one) and already make the 

necessary assessment on it. 

 

Justification of risk prediction error estimation 

To estimate the error, we will use the results obtained as a result of the inference of trained 

models on deferred data. 

The first approach to estimating the risk prediction error 

In the first approach, for each resulting risk level, we estimate the resulting average 

absolute deviation from the true values of the predicted class. As a result, after memorizing the 

received error level, we will be able to predict the interval in which the true value of risk lies with 

a high degree of probability. 

This approach can be described formally. Let us define   - predicted risk value for the 

object j,  - the true value of risk. Then for the risk r=i the prediction error will be determined as 

follows: 

. 

After making calculations, we can give the error of the obtained estimate, using also other 

statistics of the obtained deviation modules. 

Note that this estimate will be the better, the larger the deferred sample we carry out these 
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calculations. 

The second approach to estimating the error of the risk forecast 

The second approach complements the first approximation in a certain way. In it, we can 

estimate the resulting error using subsamples of features of objects. This information will be 

especially useful in the case of limited information about objects. 

In this approximation, it is necessary to repeat the logic of error calculations, using only 

the corresponding subspaces of features. 

In this case, the error interval will naturally narrow with an increase in the number of 

features for the object under study. Using an estimate for the importance of features of objects (in 

any of the presented models), we can identify several sets of features that are responsible for, for 

example, a basic, extended and detailed description of the object, and then make an estimate for 

the resulting errors for each set of features. With this logic of combining features, the extended set 

will include the basic one, and the detailed one will include both of them. 

In general, we can distinguish N such groups of features [g1, g2, …,gN], then for each of 

these groups for risk level i we will have an error vector [e1, e2, …,eN], each component of the 

vector will be expressed similarly to the first approach: 

. 

Here  - prediction of a model for an object in the description of which there are 

only features from the group gj. 

It is also worth noting that these estimates require an even larger dataset for accurate 

estimates of the errors obtained. 

The presented study presents the results obtained using the first approach. 

 

Conclusions 
 

In this study there were represented some data-based health risks estimation and 

forecasting models for workplaces with high levels of noise and vibrations. Features extraction 

and models quality metrics comparison were described. Similar approaches could be applied for 
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medical and lifestyle personalized data analysis in various areas and tasks. 
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